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The problem of encounter of a pursuing and persued object is investigated, A scheme
for constructing the control for the pursuing object is cited, A condition is formulated
under which this scheme ensures convergence of the objects not later than at a given
instant,

1, Let us consider the encounter of the two controlled motions [1 to 12]
dy/dt =A (t)y + B (t)u (1.4
dz/dt =f (t, z, V) (1.2)

where y ={¥Yfyy.++s Un}» 2 ={Zy,..., 3n} are the phase vectors of the pursuing and
pursued objects, respectively; & is the r-dimensional controlling force acting on the
pursuer; v is the s-dimensional control of the pursued object (target); A (f) and .B(t)
are continuous matrices of the corresponding dimensionalities ; finally f (¢,2, v) is an
n-dimensional vector function continuous in ¢ and p which satisfies the Lipschitz
condition in z.

We assume that the restrictions-imposed on the control u are of the form

ue U (1.3)
where {J is some convex bounded closed set in the Euclidean space E ,.

We shall not consider explicitly the character of the restrictions imposed on the con-
trol U, We merely assume that the pursuer can collide with any piecewise-continuous
realization v from some class

(] Vi vev (1.4)

By the "encounter” of the motions ¥ [¢] and z [¢] we mean the coincidence of m< n
prescribed components of the vectors ¥ and z, i, e, we say that ¥ is the instant of en~
counter of the motions if the equalities

yi;[t] =z,[t] G=1,...,m) (1.5)
hold for the first time at ¢ ==1.
From now on we assume that the coordinates i,,..., i, are associated with the m-
dimensional vectors {¥},, and {z},.
Let 9° be the instant of absorption of process (1.2), (1.4) by process (1,1), (1.3) [2
and 6] computed at the initial instant § == {,. We know that the problem of construc-
ting the control u® =u° [t, y, z] which ensures meeting of motions (1.1), (1.2) not
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later than at the instant 9° involves certain difficulties [3,4 and 5]. Specifically, it is
difficult to confine oneself to the ordinary solutions y [¢t] and Z [¢] of the synthesized
system of differential equations (1.1),(1.2), i, €. it becomes necessary to introduce gene-
ralized motions, We shall therefore take the limit of a certain discrete scheme in which
we assume that the control &g is constructed in the form

us =up [t, y [vr], 2 ()]s v, On) (ta <E<Thppy Tan— T =38) (1.6)

in each interval [Ta,Te,y) (¢ =0, 1...) Here ©, is some ancillary variable whose
meaning is explained below, (See [3 and 4] for a detailed description of the scheme.)

We say that the control u*=u" [t, y [va], z [*a], Tr, Or] (K =0, 1...) ensures
convergence of the motions ¥ [£] and z [t] form the inidal state 'y° =y (t,), 2° =
=z (to) not later than at the instant 0% if the inequality

Tue = sup [lim sup (sup 440, )] < 0° (1.7)
e >0 §—+0 v

is fulfilled, Here 0:5. , is the instant when for the first time [{y [8] —z [0} < &.
Inequality (1, 7) means that for any € >0 and for any A > 0 there exists a 6° < 0

h th
such that 0tu.5v<ﬁt + A for 06K, - vev

The purpose of the present paper is to indicate the conditions under which one can
construct a control u* which ensures convergence of motions (1. 1) and (1,2) not later
than at the instant 9°

2. Ininvestigating the above problem on the encounter of motions we shall assume
that condition A (formulated below) is fulfilled,

We begin by introducing some ancillary notions,

Let G, [y, v, ¢] and G, [z, v, €] be the domains of attainability of objects (1. 1),
(1.3) and (1. 2), (1, 4), respectively [2 and 6], in the space E,, of vectors g ={Li1yee s i)
These domains correspond to the instant ¢ > v and to the initial states y =y [¥],

z = z [t].

In constructing the attainability domain G, [y, v, #] we assume that the measurable
vector functions u (t) are arbitrary and that they essentially satisfy condition (1, 3) for
Tt ¢, The domain G, [y, 7, &] is convex by virtue of the convexity of the set U ;
moreover, this domain is closed, By 9° [y, z, T] we denote the instant of absorption of
process (1,2),(1.4) by process (1.1), (1.3), i.e. 9° [y, z, T] is the smallest value of
the parameter ¢ for which G, {z, T, #]1 CG,*ly, 7,9]. If an instant of absorption does not
exist for certain y, z, T we stipulate that in such cases 4° [y, z; T] = ocs

We say that process (1.2),(1,4) is e<absorbed by process (1.1), (1.3) if for certain
¥ %, T,® we have G4l3z, 1, 8] C G5 [y, v, ©], where the difference G,¢ is thee-neigh-
borhood of the set G, (g=6;® if there exists a g*€& G, such that the absolute value of the
difference || g — g* | < ®)- The smallest number & for which g-absorption occurs will be
denoted by e°(e® = e° [y, 3, T, ¢)).

Since the domain G, [y, T, ©] is convex at every boundary point ¢ of the set G;*
ly, ©, ©] for € > 0, we can construct one and only one hyperplane L (g) : (I (q), &) =
= K (g). We shall assume that ]| { (¢)}} = 1and that (I (¢), g) < p (9) for any g € G;*
ly, v, @] (i.e, that I (g) determines the direction of the exterior normal to the boundary
of the domain G,* at the point ¢). By My () and Ny (1) we denote the set of boundary
points ¢ of the domain G¢* [y, v, ¢] satisfying the inequalities {1 (q) — Il>8 and
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1 2(q) — 1§ < B, respectively, where I is a given unit vector and B is a positive number,
We define the set Ty, of elements y = {y, z, 7, 9} as

YeE ra,b

-t > a>0, to<“<0° [y°1 zo, ‘o] = ﬂov e’ [y! z, 1',-0] >b>0
ve Y-v = GI' [yo, to, T]J zezr = Gz' [zo’ loy T]
where a, b are positive arbitrarily small numbers, and G;* and G;* are the attainability
domains of objects (1.1), (1.3) and (1,2), (1.4), respectively, constructed in the space
En.
Condition A. There exists an @’ >> 0 such that for any 0 < & <{ @’ there exists
a unit vector {° and a number f >> O which satisfy the condition lim f'=0 as & —0
such that for all ¢ € My (I°) we have the inequality p {q, Gs, [z, ¥, 3]} > a. This
property is fulfilled uniformly for all Y from every set I'a » for arbitrarily small @
and b. Here p (g, Gy) is the distance from the point ¢ to the set G,.
The above condition is fulfilled if for all y from every I's, s the boundaries of the
domains G,*’ [y, 7, #] and G; [z, 7, B]touch at one point only, i, e. if the set
K[y 279 =D"[y, % 0] N Gl v 9]
consists of the single point ¢°; here D*’[y, ¥, 8] is the closure of the complement
of the set G,*°[y, 7,9], and G, [z, v, 9] is the closure of the domain G, [z, v, 8].
We note that p{g°, G, [z, ¥, ]} =0 for the point ¢° € K [y, z, v, ¢]. Hence,
for any 0 < a <{ a°® by virtue of Condition A we have
¢° € Ng (1) 2.1)

Fig. 1 shows the case where the set K consists of the single point ¢°. The thick portion
of the curve represents the set Ny (1°).
Note, LetEq.(1,2)be of the form

lans)

[y

d
F=CW:+DO» (2.2)

Here C (¢) and D (t) are continuous matrices of
the corresponding dimensionalities, For 9> 1 the
control v [¢] is restricted by a condition of the form

(1P %® [o] < v 1] 2.3)
. where x:® [v] is the norm of the linear functional
Fig. 1 9

9 1= ), v 1)) at
T

generated by the vector function v [t] on the appropriate normed space Py {h} of the
s-dimensional vector functions h () (t <<t ).

Let us assume that condition (1, 3) can also be interpreted as the restriction x{V{u] < p
on the norm of the linear functional &

vulel={ e, v a
T

generated by the vector function u [t] on some normed space &,{g} of -dimensional
vector functions g(t) (vt << 0).

Let p, [g] and p, [A] be the norms of the vector functions £ and A in-&, ¢g} and
& {h}, 1espectively, In this case the instant of absorption is defined as the smallest
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positive root ¢ of Eq. [6]

i A i 3 —_ '
ﬁéx{"p‘ (A (Y [, t] B ()] — vp, [M{Z[0, 81D (),,] +

ALY 9, 7] y Ix] — Z [, 7] 2 [T])y)==0 (2.4)

Here A is an m-dimensional vector; Y [®, t] and Z [0, ¢] are the fundamental mat-
rices of the system of Egs,(1.1) and (2.2) which for u = 0, v = 0 satisfy the following
condition: Y [8, 8) = E, Z [, 0] = E; {F},, is the matrix whose rows are the {;-th,
is-th, ..., I,-th rows of the matrix F (F is some matrix containing n > m rows); the
asterisk denotes transposition,

Condition A can be verified effectively in this case by means of (2, 4).

The following statement is valid,

Theorem 2,1, IfCondition4 is fulfilled it is possible to construct a control y3*
of the form (1, 6) which has the following property: for any arbitrarily small number
1 > 0 there exists a number §° > 0 such that for all 0 <8 < 6° with the control
us* chosen by the pursuer, and for all vV, there exists an instant 8<{9° [y°, 2°, o]

ch that
" Hy [8] — 2 [0l <7 (2.5)
Thus, Theorem 2, 1 states that if condition 4 is fulfilled there exists a control ug*

which ensures convergence of motions (1,1), (1.2) not later than at the instant {°
Theorem 2,1 will be proved in Sections 4 and 5,

8, Let us consider the construction of the control Us*. At the initial instant ¢ ==t
we determine the instant of absorption §° ==9° [§°,2°, to]. We then break down the
time interval [fo, 8°] into equal semi-intervals [Tr, Te+1), Toer — Tr =8, 1, ==t,.
At each instant {= Tk we compute 3°[y[vr], z [*a], Ta] and determine the number

Op = min (&, 9° [y [w], 2 [va], v]}, B, =0° (3.1)

If 9, =98°[y [va], 2 [ta], Tr],We construct the control u® (t) = u° [¢, y [va],
2z [tr], tr, ¥4], which aims [2 and 6] the motion of system (1, 1) at some point
{y [Oa]}m = ¢° [va] from the set K [y [*r], z [va], va, Ox].

Next,we set
us* [t, y [w], z [waly o Oal=u’ [ty ¥ [ta], 2 (W], v, Ba] (v < 8 < Tent)

If Oy << 9° [y [*a], 2, [Ta), Tal, we compute e° [74],==2° [y [4], 2 [v&]s T2, 0],
find some point ¢° [v,] belonging to the set K {yl*a], z [*r], wx, Ur]and determine
the control u,° (£) =u¢’[¢, ¥ [vr], 2 [tr], va, ¥r], which brings system (1.1) into the
&° [*a]-neighborhood of the point g°[va]. Having determined .’ (£), we set
uﬁ* [tv Y [rk]y 4 [Tk]v Thy ﬁ’;] =u°£ [tv y [tklv 2z [‘l’k], Thy '&h] (Th \< l < T’H'l).

4, Before proving Theorem 2,1 we consider the following ancillary problem,

Problem 4,1, Let the motion of an object be described by Eq,(1,1) where the
control is restricted by a condition of the form (1. 3), We assume that the domain
G,® [y, ¥, 9] has been constructed for certain values & > b >0, #>7, y =y [Tl
Let g, and gy be certain boundary points of the domainG,®such that

Il (q) —1(g)) = (is some small parameter) (4.1)

By Uy (f) and u, (¢) we denote the permissible program controls which bring system
(1,1) from the state y [t] to y; [¢] and ¥z [#],respectively, such that
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{p [BDm — @) =&, [{y2 [#]}m — q2] = (4.2)
We assume that in the time interval [v, v 4 8], v 4 8 <{ & system (1.1) is acted
on by the control u, (¢) which produces the motion ¥z [¢]. If we construct the domain
Gt [yz [t + 8], v+ 8, O] from the value of y; [* 4 0] realized at the instant
t =t + 8, then, generally speaking, ;& G® [y, [t + 8], T + &, ¥]. we must
choose €* in such a way that ¢; & G,** [ya [* + 6], ¥ 4 6, @] and estimate the
quantity Ag =ge* —e.
Solution of Problem 4,1, By the Cauchy formula we have
8
nBl=y @, Uyl +{Y 8 0BOu@a
N (4.3)

nBl=Y[0 1yl +\Y 3 ] B()u()dt

We introduce the following notation ;

Au (£) = uy () — uy (2)
() —Bu()=ua(t) (F<t<T+D)

t ()= 4.4
" “)_{ul(z) (+8<t< D) 4
. o U2 () F Au(t) = () x<<t<<r4-9)
“ (t)—{uz(t) T+6<t<H)

The controls u,* (¢} and u,* (f) are permissible and are associated with certain tra-
jectories y,* [t] and y,* [¢] . From (4, 3) and (4, 4) we find that
l'(’l) n* [0] =y, (0] + Ay
vt (8] =y, [8] — Ay (4.5)
5
Ay =— S Y9, t] B(t) Au(t)de  (4.6)

T

We set
g [0 = 2 y,* [O01im = z;*
A = 8z (i=1,2)
We note that the point z; (i = 1, 2) is the
point of the set G, [y, v, @] closest to q; (i =

Fig, 2 = 1,2), From this we obtain Egs, (Fig.2)
g —z=c¢el(y) (1=1.2) (4.7)
max ({gqp), 2) = (I(q)s z)) =p;— & (€ G [y, 7, 8) (4.8)

By the definition of the attainability domain we have z;* & G,[y, 1, 9], so that from
(4. 8) we have ({q;), =*) <p (g) — & (i = 1,2). From (4,5) and (4, 8) we have

(@), 82) <O (4.9
(L{q), Bz} >0 (4.10)
Let Al = I(g) — L(q,) . From (4,9), (4.10) we find that (A/, Az)<{(1 (q,), Az)< O;

hence, [T (a0 82) I < | AL Az =0 A (4.41)

Let us denote the hyperplane (I (¢;), z) = 0 by L. The vector I (¢;) and the hyper-
plane L form an orthogonal expansion of the space Z,. Letg;and g, be the projections
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of the vector Az on l(q) and L, respectively, Then

lgalP=18z]%— gl (4.12)
a=((n) A2)1l(q), Hal=1((a) A2)| <o | Az] (4.13)
Let us estimate the distance between ¢; and z;*. From (4, 5), (4.7), (4.12), (4,.13)
we have N — s *P=lel(q) + 2 — 2 — Az P =

=lel () —an—alP=le(@—alf+lszP—lal
Choosing a sufficiently small | Az [ /e ,we find with allowance for (4, 13) that

oy ot [ (14 100 (2L (L)

() (1A2h) o (g g BLAZ) | (12) 4.14)

g
It is now easy to obtain the required estimate for the quantity Ae. To this end we

note that the point z;* belongs by construction to the domain GE [y, [t 8], v+
+ 8, #]. Since the distance from ¢, to this point is estimated by inequality (4, 14), it

follows that Az Az x
Ae =¢g* —s<a(i+ I ")+o(" e") qnquI]—i—o(H ) 4.15)
Setting & > b, where b 1s a f1xed positive number, and recalling (4. 6), we find from
(4.15) that Ae < kgd -+ o (6) (4.16)

where % is some positive number, We note that all points p of the form
p=aqa—la—pli(a) for la—rl<e

also belong to the domain G1*T2%[y, [v + 6], v~ 8, & for a Ae satisfying (4.16)
(Fig.2).

5, Our proof of Theorem 2,1 is based on the investigation of the variation of the
quantity g° along the trajectories of systems (1,1) and (1,2).

The quantity ¢° computed at each instant ¢ = v from the realized ¥ [t] and z [7]
can be regarded as some function of time €° [t]=e° [y [], z [7], ¥, Ox], where a
speciﬁc realization &° [1:] is associated with particular controls ¥ and v ,

We can show that in each interval [‘ch, 'ch+1) in the case

Y] ={y (] z[t]. £, 9r} & Tq 00 e << i
for any v €=V the selection of the control us* ensures the inequality

&° [thaa] — e° [ta] < M (8)-8 (5.1)

A@) -0 as §-0 (5.2)
uniformly over ¥ from 'y 4.
We assume that €y = 0,”_1—0 otherwise (3 1) and the definitions of the instant of
absorption 9° and the quantity &° imply Eq, &°[Tn,,] = 0, which in turn implies (5,1),
Let the values of the phase vectors y vr] and z [ta] realized at the instant ¢ = Th
define the attainability domains G} * [x [v [xal, %8, 8] and G: [z [*x]s <, ©).
the definition of the quantity g° [q] we have

Gz [, o ¥ Gx W [Tk} T 91
By the instant £ = Ta,, = %a -+ 8 the control %s* brings system (1,1) to the state
¥ [*a41], and the control v & V brings system (1,2) to the state 2 [Ta1]. The inclusion

Here
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G [z [Tin)) Ty Bl G: e [y [Teards Trans )

generally does not hold, so that we need a new and generally larger value of €° [ta],
which will ensure the ge’absorption of process (1,2), (1,4) by process (1, 1), (1, 3) at the
instant £ == Tp,;. Let us obtain an upper estimate of the variation of the quantity, &%«
Here we proceed on the basis of the following statement,

For any § > 0 there exists a { (8) dependent solely on § such that for any permis-
sable control ¥ (£) which brings system (1,1) from y [t] to y [v + §],we have

p{g Gt ly[v+ 8}, v+ 6,3 L9
t@®)—>0 60,60, T4+06<? (5.3)
Here g is an arbitrary point from G, [y [t], %, ©), {y [*], ¥, ©} belongs to any bound-
ed domaininEp 2. The validity of this statement follows from the form of system (1.1)

and from the character of conditions (1, 3).
Let us choose a sufficiently small number §>>0 such that ¢ (6) < min {a°,b} ;next,

we set — (6) — ; (6) (5.4)
and find the corresponding number § (&) >> O by virtue of condition 4 .
Let p be an arbitrary point of the domain

Ga [z [*r], *», ®]. Two cases are possible,
e[t ]

") SG'(p) c Gl * [y [rk]Y Tk 19] (55)
1, ]

@ Se(p)= Gy [y vkl v, 01(5.6)

where S, (p) is a closed sphere in E,, of ra-

dius o with its center at the point p.
Let us consider the first case, We assume that

=6 "y teal, T 81 (5.7)

and set a(p—g*)
Fig, 3 =P+ g1

id
Here g#:is the point of the domain G: Leal [¥ [%&+1],%k41, O] nearest to p (Fig. 3).
By virtue of (5. 5),

)
gE Gl * [y [Tk]v Tk,’&]
We can show that

e[+, ]
P8 Gy M [y ltrn) T, ¥l =g —g*l=a+lp—g*I>a=1{(d)
The latter inequality contradicts (5, 3), so that assumption (5. 7) is invalid, i, e, in the

first case ha Jg
T case e have PE G "My [thnl, Trn, 0] (5.8)

Let us consider the second case, By (5.6) there exists a point: ¢ belonging to the bound-
ary of the domain G1 N y[*x] tx, 8] such that ﬂq —p|<a Let. ¢* be the point
!
of;the boundoary of [y [‘l’h],“h, ¥ ]nearest to p ; since ﬂq —pl< o, then
g* & Ny (). We can show that
p=gq* —1@"llg* —prli (5.9)

We note now that in the time interval [Tk, Th,u) system (1, 1) is subject to the control
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us* which brings system (1,1) by the instant ¢ =+ into the €° [73}-neighborhood of
some point g° [tx] belonging to the set K [y [ta], 2 [tr], Tr, B], where g*=N; (1)
and ¢° [ta] € Ng (I°) (see (2.1)), so that I? (@*) —1@° [*)) ,|< 2 . Thi:
means (as noted in the solution of Problem 4, 1) that the points p defined by a relation
of the form (5, 9) for | ¢* — pll << & < b < €° [ta] belong to the domain

[t ]+Ae

G, [¥ [Thaa]s Thers B)

Ae < 2kBS + o (6) (5.10)

Recalling (5, 8), we can now assert that

where

r,..]+Ac

Ga [2 %y T 01 € 61 ¥ [y [Tiaal, Taan, 9] (5.41)
By the definition of the attainability domain,
G, 2[thu)s Thaas 81 < G2 [2 [a], wn, 9] (5.12)
Inclusion (5. 11) therefore implies the inequality
e [tna] — € [ta] < 2 KBS + o0 (8) (5.13)

Setting
2kp6 - o (8) = A (8) -6,
in (5. 13), we find from (5, 3), (5.4) and form condition 4 that A (6) -0 as § —0
uniformly in ¥ from I';, ,; this and (5,10), (5,13) imply the validity of (5,1), (5.2).
We assume now that in some interval [tg, Try1] there exists a point £, such that
? [t*] == Fflv be
Let us estimate the quantity A €° = &°[tp,,] — €° [va] in this case. Since we are
limiting ourselves to the upper estimate of the quantity Ae® , we again assume that

b= 0,y = 0.
To find the required estimate we make use of relation (5, 3), from which we find that
e[, ] e’[t,J+Ae
Gy Mlylud, w1 G Y [y [T, Y, O (e <L ©)
The inclusion (5. 12) implies in this case that
Ae® —=¢° [17!4.1] —g° [‘l'p;] g ¢ (6) (5.'14)

We shall now formulate our last ancillary statement,
The attajnabjlity domain G, [y, v, ¥] belongs to some sphere §, of radius p and

p(a)—~0 for a=0—1v-0 (5.15)

monotonically and uniformly in all {y, ¥, 0} from any bounded domain,
The validity of this statement follows from the form of system (1,1) and from the

character of restrictions (1, 3),
Finally, let us show that a given number m >> 0 can be used to find a2 §°>> 0 such
that (2.2) holds, We choose the numbers @ > 0, & >> 0 such that

2b -+ p (@) <'/am (5.16)
This is also possible by virtue of (5,15), The numbers @ and b in turn determine the

domain I, ;.

We assume now that T, is the instant when the inequality &; — v > a (7, < 7 <<
< 1y,4) is first violated, (By construction of the numbers ﬂ»i such an instant necessa-
rily arrives), Two cases are possible,
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(1) e [y [va)s 2 [7a]s T0r &) =€ [7,] <&
(2) e° [y ['#]' z [Tt]v L) ﬁl] =¢° [T*] >b

Let us consider the first case, By the definition of the quantity &° [*,] we have

G212 [%a], Ter B < Gr T [y 4], T 1) (5.17)

As noted above, the domain Gy [y [T*] Tus i] belongs to some sphere of the radius
p (B — 7)< p,/@), sothat the domain @) ‘][y [*4], e, ®] liesin a sphere
of radius

r=p@)+2e[n]<p(@+2< an

By virtue of (5.17) {y [®;]}m and {z [?;]}mm lie inside a sphere of radius r < /4 M
at the instant §, for any controls u and v ;this implies that |{y [®;] — z [®;]}m | <
<< 2 n/4 =1/ym; here, by virtue of (3, 1), ®; < 0°, so that in the first case we have
(2. 5).

Let us consider the second case, Let Ty, be the last instant when

e[yl z ], v, 9,]=>b, T T T

From (5.14) we find that

& [l < o + £ (B)
Here, beginning at the instant ¥,, and ending at the instant ¥, the vector ¥ [t] & I ;
hence, estimates (5,1) and (5,2) apply from the instant ¥y, to the instant v, ; from
this, with allowance for the inequality v, — %5, < #°—1° we obtain

e [ ] b+ G[8] + A (8) (8° —to)
As in the first case, this implies that the points {y [®;]}m and {z [®;]}, lie in a
sphere of radius "
r=p(a) + 2e° [v,] << p (@) + 26 + 2 (§(6) + A (8) (8> —¢,)
By virtue of (5.2), (5. 3), there exists a §° > 0 such that

2(E®) +2(0) (0 —2) <Vam for 0 <5<

With the number 8° chosen in this way we have r < !/4m so that

Hy [8:] —z2[®:nl<n @®:<®)

Hence, Theorem 2,1 has been proved,

8., In proving Theorem 2,1 we showed that the control us* of the form (1, 6) whose
construction is described in Section 3 ensures fulfillment of relations (5. 1), (5.2). This
control is some vector function of time in each interval [, Tay) (¢ =0, 1,...) -
We can show now that among the controls ug of the form

us = us [y [ta], z [va], . On] (6.1)

i.e, among the controls constant over each semi-interval [rh, Tayy) there exists a per-

missible control us® given by Eq,
Tk+1

1
u = | w it g, 205, T9,0de (6.2)
Tk
which also ensures fulfillment of relations (5,1), (5.2).
To this end, making use of the Cauchy formula, we obtain the inequality
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Hy* [vand — ¥° [vaalll <0 (8)-6 (6.3)
where y* [*a)y], ¥° [Tasq] are the states to which the controls Us* and s° bring
system (1, 1) from the state y ==y [vx]; the function ¢ (8) satisfies the condition

G (8) >0 as 5-0 (6.4)
uniformly in every domain [ .

We readily infer from (6. 3), (6.4) that relations (5.1), (5.2) remain valid for u= us°
and for all v & V. As in proving Theorem 2. 1, we can now verify the validity of the
following statemgnt,

Theorem 6,1, If condition 4 is fulfilled, then a control ug® of the form (6, 1)
ensures convergence of the motions y [¢] and z [¢] not later than at the instant f==1°
For example, let us consider the problem of encounter of two material points of unit

mass M, and M, moving in a vertical plane, Their equations of motion are
Y1 = Ya Yo = Yo Y3 = U, Y = Uy — & (6.5)
2" = 1z, =124, =y 3=y —4g (6.6)
where ¥y, y; and z;, z, are the coordinates of the pursuing and pursued points, respec-
tively; y,, y, and z3, z, are the components of the velocities of the pursuing and pursued
objects; g is the gravitational acceleration; the controls u = {u,, ug} and v == {v;, vy}
are restricted by conditions of the form

u + ug! <, nlt oot <, p>Y (6.7)
By the "encounter” of objects (6. 5) and (6.6) we mean the coincidence of the coor-
dinates of the points M, and M,.

The attainability domains G, [y, T, ] and G, [z, ¥, @] constructed in the plane g,

gs are the disks
ler —( + Ty)I* + [gs — (vs + Ty — Yo THP< R (6.8)

ler — (31 + T29))* + [8a — (2 + Tza — YpgT?P < 1 (6.9)
whose radii are R = 1/, uT? and r = 1/, vI?, where T = & — 1. From (6. 8), (6.9)
we readily obtain the following equation for determining the instant of absorption
9° [y, 2z, 7]:
Yep—2O@ — P —Iny+ @ - — [+ 2 F—T1F=0 (610
= y; — 3 (t=1, 2, 3, 4
The quantity 9°[y,z,¥] is the smallest positive root of this equation,
Since R > r for p >v and ' = % — v > 0, the boundaries of the domains 6;5°and
G, always touch at a single point ¢° so that condition 4 is fulfilled in this example,
Fig,4 shows some computer-simulated realizations of the pursuit process for p = 60,
v = 60—10y'5, g = 10. At the initial instant ¢ ==0 the objects are in the states

10 =1y (0 =y (0) =y, (0) =0
7 (00 =0, 2z (0)=15 2(0) =235, 2z,(0) = —5
The solid curves in Fig, 4 represent the trajectories of objects (6, 5), (6. 6) in the case
where the pursuer employes the control u; and the pursued (target) employs the extrem-
al control  ve, i.e. the control which at each instant aims the motion of system (6, 6)
at the point of tangency of the attainability domain boundaries, Encounter in this case
occurs at the instant ¢ = 0°[¢] = 1.
The dot curves represent the trajectories of the pursued object in the case where the
pursuer employs the control u,°, while the target deviates from the extremal strategy .
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Thus, the ascending trajectories correspond to the case where the target directs the force
v of magnitude v to one side of the pursuer

o487 v-/8 throughout the process; encounter in this case
occurs at the instant £==0.97 < 0° [g] = 1.
The trajectories proceeding towards the left
are realized when the target chooses v =
= {~— v, 0} throughout the process; encounter
in this case occurs at the instant ¢ =0.73 <
<0° [y = 1.

22 W2y

8 ONYAN
VAR
AN

g

L

Fig. 4 Fig. 5

The inequality 8, < 94 is fulfilled in each interval of the pursuit process realiza-
tions considered, so that the control u; coincides with the extremal control,

We note that in the above example T'°=8°{£)] — £ is the minimax of the time-to-
encounter, and that the extremal control u, solves the problem of the minimax of the
time-to-encounter of the motions y [¢] and. 2 [¢], although the pair of extremat controls
e, ve does not yield the saddle point of the game (as is evident from the example),

At the initial instant ¢ = 0 let
nO=—=32V2 nO = %hV2 pO)=VZ y(0)=01/8Y3
£1(0) = 24 (0)= 5, (0) = 5,(0) =0
We set p = 1,5, v = 0.5, g = 0. Fig, 5 shows plots of
F=F(v, T) =1, g — VT4 — {z, [v] + Tz [*I}* — (2, [¥] + Tz, [*])*

for several values of 7 for v = v, and u= {0,— B} which is not extremal,

From the process of deformation of the curve F = F (t, T) we see that from the instant
T =1, = 0 to the instant. T, = 0.46 the smallest positive root of Eq, (6, 10) increases,
although at the instant v, = 0.46 Eq, (6, 1) has a new root T = ¢ — v = 0.23; by chan-
ging over to the extremal control at this instant, the pursuer ensures encounter not later
than at the instant € = 0.46 - 0.23 = 0.69 (i.e. much sooner than at the instant
9° [t,] = 1.48) for any permissible control v [¢] for ¢ > «,.

We have shown that the inequality Tu' Ve > Tu., v, I8 invalid in this case, so that the
pair u,, v, does not yield the saddle point of the game under consideration,

The computations for the above example were carried out by L, M, Kuperman and
V.E, Tret'iakov, to whom the authors wish to express their appreciation.
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